Curso: MECÁNICA DE FLUIDOS

PROGRAMA DE ESTUDIO

Nombre del Curso: MECÁNICA DE FLUIDOS						
Código: 20040072		Ciclo Formativo: Básico () Profesional (X) Especializado (X)				
Fecha de	Elaboración:	Gestión 2021	•	•		
Carga Horaria	Horas Semana	Horas de Horas de Teoría Practica		Tipo	Modalidad	
50	7,5	20	30	Teórico: () Teórico – practico: (X) Practico: ()	Presencial: () Semipresencial: () 100% Online: (X)	
Dirigido a: Ingenieros químicos, mecánicos, petroleros, ingenieros de procesos, de investigación, de planta y estudiantes egresados o cursando mínimo quinto semestre de ingeniería.				Requisitos curriculare	es: Ninguno	
Conocimientos y Habilidades Previos: Cálculo vectorial, diferencial e integral, Mecánica del medio continuo, conceptos básicos en Termodinámica y fenómenos de transporte.						

1. DESCRIPCIÓN Y CONTEXTUALIZACIÓN DEL CURSO:

En el curso de **MECÁNICA DE FLUIDOS** se estudia el movimiento de los fluidos (líquidos y gases), así como las fuerzas que originan su estado de reposo o movimiento. En el contexto de ingeniería mecánica – Química – Industrial se hace énfasis de la importancia de los fluidos en relación con el diseño y análisis de diversos sistemas, tales como: procesos industriales, lubricación, generación de energía, sistemas de distribución por tuberías (gas, agua, petróleo), sistemas de transporte (aéreo, terrestre, marítimo), sistemas de ventilación, etc.

2. CONTRIBUCIÓN DEL CURSO AL PERFIL PROFESIONAL:

Este curso contribuye al perfil profesional de ingeniería mecánica, química, industrial, alimentos, técnicos industriales, petroleros, ingenieros en gas petróleo y energías, y ramas afines, en que el profesional será capaz de identificar y proponer alternativas de solución a problemas reales de mecánica de fluidos, con base en los parámetros, variables y ecuaciones gobernantes de dicha disciplina, para el mejoramiento de la eficiencia de procesos industriales en campo aplicativo real.

3. OBJETIVO GENERAL:

Mejorar en el profesional de ingeniería las competencias que requiere para modelar y resolver las ecuaciones gobernantes que describen el comportamiento de los fluidos en reposo y en movimiento, en estado estacionario o transitorio. Se espera que, al finalizar el curso, el participante sea capaz de proponer soluciones a problemas aplicados de la mecánica de fluidos.

2

4. COMPETENCIAS GENÉRICAS Y/O TRANSVERSALES MODELO PROFESIONAL – UNIVERSITARIO:

Generación y aplicación de conocimiento	Aplicables en contexto
 Capacidad crítica y autocrítica. Capacidad de abstracción, análisis y síntesis. Capacidad creativa. Capacidad de comunicación oral y escrita 	 Capacidad para identificar, plantear y resolver problemas Capacidad de aplicar los conocimientos en el área de estudio y la profesión.
Sociales	Éticas
Capacidad de expresión y comunicación.Capacidad de trabajo en equipo.	 Valoración y respeto por la diversidad y la multiculturalidad. Compromiso ético.

5. CONTENIDO TEMÁTICO:

MODULO	TEMA		SUBTEMA	
0	BASES DE DATOS,	1.	Descripción general de simulación de procesos con Aspen –	
	PROPIEDADES DE		HYSYS	
	FLUIDOS Y		1.1. Limitaciones de los simuladores	
	ANÁLISIS		1.2. Información mínima requerida antes de simular.	
	TERMODINÁMICO	2.		
	DE SISTEMAS EN		HYSYS	
	ASPEN HYSYS		2.1. Administrador de bases de la simulación (SBM)	
		3.	Modelos termodinámicos y Criterios de Selección.	
			3.1. Métodos disponibles en ASPEN HYSYS	
			3.2. Ecuaciones de estado	
			3.3. Modelos de coeficientes de Actividad	
			3.4. Criterio N°1: Uso de la temperatura reducida como	
			referencia	
			3.5. Criterio N°2: Recomendaciones de Uso Empresa	
			VIRTUALMATERIALS	
			3.6. Criterio N°3: Recomendaciones de uso según el tipo	
			de compuestos y las condiciones operativas:	
		4.	Cálculos de Propiedades de fluidos ideales y no ideales	
			4.1. Ambiente de simulación en ASPEN HYSYS	
			4.2. Especificaciones de una corriente de materia	
			4.3. Herramienta ANALYSIS	
			4.4. Determinación de Curvas de punto de Ebullición.	
			4.5. Propiedades criticas de compuestos puros y mezclas	
			4.6. Construcción de diagramas de equilibrio PT, PV, PH,	
			PS, TV, TH y TS	
			4.7. Estimación de propiedades físicas, termodinámicas y	
			de transporte de compuestos puros y mezclas.	
		5.	Balances de masa y energía	
			5.1. Operación ajuste de variables (<i>Adjust</i>)	
			5.2. Balances de materia y energía (conceptos teóricos y	
			ejemplos de aplicación)	
			5.3. Operación lógica BALANCE	

Г			
		5.4.	Balances de materia y energía simultáneos en
			procesos industriales.
	(de Potencia – Refrigeración – Calefacción
		6.1.	Descripción de los procesos y subsistemas
		6.2.	Microturbina de combustión interna CAPSTONE C30 MTCI
		6.3.	Sistema de refrigeración por absorción ARS
		6.4.	Integración del ARS a la MTCI
		6.5.	Características de los componentes de la MTCI (Tasa de energía de entrada, eficiencia eléctrica,
		6.6.	disponibilidad de calor para recuperación) Rendimiento energético de sistemas CCHP (Calculo
			de Tasa de energía primaria, COP, electricidad producida, eficiencia eléctrica, entrada de potencia,
4 NATUDA	UEZA DE A	1 Canaa	eficiencia CHP)
1 NATURA LOS FI		1. Conce 1.1.	ptos fundamentales Presión
ESTUDIO		1.1.	
MECÁNI		1.2.	Peso y Masa Sistemas de unidades
FLUIDOS		1.3. 1.4.	
FLUIDO	3	1. 4 . 1.5.	Compresibilidad de fluidos Densidad
		1.5. 1.6.	Peso especifico
		1.7.	Gravedad especifica
		1.7.	Relación entre la densidad y peso específico.
			idad de los Fluidos
	4		Viscosidad dinámica
			Viscosidad dinamica Viscosidad cinemática
		2.2.	Fluidos NEWTONIANOS y no NEWTONIANOS
			ón de presión.
		3.1.	Presión absoluta
		3.2.	Presión manométrica
		3.3.	Relación entre la presión y la Elevación.
2 DISEÑO	Υ	1. Introdu	
SIMULA			ios físicos en la mecánica de fluidos.
SISTEMA			Ecuación de continuidad
	ORTE DE	2.2.	Conservación de energía – fundamentos de la
FLUIDOS		 .	ecuación de Bernoulli
	RESIBLES	2.3.	Restricciones de la ecuación de Bernoulli
		2.4.	Teorema de Torricelli
		2.5.	Chorro vertical de Fluidos
		2.6.	Flujo debido a la disminución de la carga
		2.7.	Ecuación General del Balance de Energía Mecánica.
		2.8.	Potencia que requieren las Bombas.
		2.9.	Potencia transmitida al Fluido
		2.10.	
		2.11.	
			en de Flujo.
		3.1.	Numero de Reynolds
		3.2.	Ecuación de Darcy
		3.3.	Perdida de Fricción en el Flujo Laminar
		3.4.	Perdida de Fricción en el flujo turbulento.

		3.5.	Coeficiente de Resistencia
		3.6.	•
		3.7.	Perdida en la salida
		3.8.	
		3.9.	· · · · · · · · · · · · · · · · · · ·
			acoplamientos de tuberías
		3.10.	· · · · · · · · · · · · · · · · · · ·
			totales por fricción en tuberías.
			ción y Aplicación de dispositivos mecánicos de aumento
			ergía (bombas).
		4.1.	Factores a considerar al seleccionar una bomba para una aplicación en particular
		4.2.	Parámetros a considerar después de seleccionar la bomba.
		4.3.	
		4.4.	•
		4.5.	
		4.6.	Carga neta de Succión Positiva disponible y requerida.
			y simulación de sistemas reales con bombas, tuberías
			sorios.
		5.1.	
		5.2.	!
			dispositivos mecánicos de aumento de presión.
3	FLUJO	1. Introd	lucción
	COMPRESIBLE EN	2. Princ	ipios físicos fundamentales
	TUBERÍAS	2.1.	Numero de MACH (Tipos de flujo)
		2.2.	• • • • • • • • • • • • • • • • • • • •
		2.3. Deducción de Ecuación de continuidad para flu	
			compresible
		2.4.	9
		2.5.	, , ,
		2.6.	
		2.7.	Ecuaciones de Estado de los Gases perfectos y Reales.
		2.8.	Velocidad Acústica y Numero de MACH para un gas Ideal.
		3. Proce	esos en flujo de fluidos compresibles
		3.1.	Expansión ISENTROPICA – ADIABÁTICO – ISOTÉRMICO.
		3.2.	Flujo adiabático con Fricción.
		3.3.	Ecuaciones de Propiedad para Flujo Adiabático
			io y simulación de sistemas de flujo compresible reales SPEN HYSYS.
			ción – operación de sistemas reales de Compresión en
			múltiples etapas
		5.1.	Tipos y operación de Compresores
		5.2.	
		5.3.	Ecuaciones para sopladores y compresores.
		5.4.	•
		5.5.	•
		5.6.	Compresión politrópica

	1			E ''
			5.7.	Ecuación de la Potencia
			5.8.	Efecto del peso molecular del gas en el rendimiento de
				compresores centrífugos.
			<u>5.9,</u>	Parámetros de Simulación Real
4	TEMAS	1.		SIS HIDRÁULICO de flujo de tubería en Aspen HYSYS
	AVAŅZADOS			Hydraulics).
	MECÁNICA DE		1.1.	Modelado de tuberías
	FLUIDOS		1.2.	Ecuaciones diferenciales generales (Navier –
				Stoke)
			1.3.	Modelos de tuberías en ASPEN HYSYS (Flujo
				monofásico y multifasico)
			1.4.	Modelado de REDES de tuberías
			1.5.	Patrones de Flujo en tuberías horizontales, verticales
				he inclinadas.
			1.6.	Correlaciones de flujo de tuberías para la
				determinación de la caída de presión
			1.7.	Formación de Hidratos he inhibición en tuberías.
			1.8.	Flujo multifasico en Baterías de Producción.
		2.	DISEÑ	O HE INSTALACIÓN de Válvulas de Control.
			2.1.	Elemento de control final
			2.2.	Acción de falla de una válvula de control
			2.3.	Fabricantes de Válvulas de Control
			2.4.	Especificaciones para estimar una válvula de control
			2.5.	Coeficiente de una válvula de control C_V : Tamaño de
				una válvula de control
			2.6.	Válvula con Característica de abertura rápida
			2.7.	Válvula de característica lineal
			2.8.	Válvula con característica de igual porcentaje.
			2.9.	Ubicación de las válvulas de control.
			2.10.	Instalación de válvulas de control
		3.	DIMEN	ISIONAMIENTO DE TUBERÍAS (Cálculo del tamaño
			óptimo) Line Sizing
			3.1.	Ejemplos de aplicación
		4.	ANÁLI	SIS DINÁMICO de Control de Sobrepresiones para
				as de compresión centrífugos.
			4.1.	Simulación dinámica (fundamentos teóricos)
			4.2.	Rango de estudio de la Simulación dinámica
			4.3.	Clasificación de modelos matemáticos:
			4.3.1.	Modelos distribuidos: ECUACIONES DE VARIACIÓN
			4.3.2.	Modelos agrupados (Sistemas Lineales y no Lineales)
			4.4.	Ecuaciones de conservación
			4.5.	Herramientas para la simulación dinámica.
			4.6.	Procedimiento guiado por pasos para el éxito en la
				ejecución de la simulación dinámica en ASPEN
				HYSYS.
			4.7.	¿Qué es SURGE y porque es un problema?
			4.8.	Resultado de la sobretensión en máquinas rotativas
			4.9.	Fenómenos transitorios en un sistema de compresión
				centrifugo
L	1	1		

-
4.10. Selección de escenarios de sobretensión de
compresores en ASPEN HYSYS y programación de
eventos (<i>Event Scheduler</i>)
4.11. Curvas de sobretensión
4.12. Prevención de sobretensiones
5. DISEÑO, SIMULACIÓN Y OPERACIÓN de Recipientes a
Presión Reales
5.1. Equilibrio vapor líquido y análisis de columnas de
destilación
5.2. Diagramas de equilibrio isobaro e isotérmico
5.3. Ley de RAOULT
5.4. Diseño y operación de columnas de una sola etapa –
Evaporación Instantánea (Balances de Materia y
Entalpia)
5.5. Diseño y Simulación de Separadores Reales
5.6. Correlaciones para modelo real en ASPEN HYSYS.
6. FLUJO DE FLUIDOS ALREDEDOR DE LECHOS
EMPACADOS.

6. UNIDADES DE COMPETENCIAS DISCIPLINARES:

Modulo N°0: BASES DE DATOS, PROPIEDADES DE FLUIDOS Y ANÁLISIS TERMODINÁMICO DE SISTEMAS EN ASPEN HYSYS

Competencia:

Conoce los conceptos fundamentales para el estudio de sistemas y procesos termodinámicos aplicados en el campo industrial.

Objetivo del módulo:

Conocer los conceptos fundamentales utilizados para la descripción y clasificación de los sistemas y procesos termodinámicos.

Elementos de Competencia Disciplinar					
Conocimientos	Habilidades	Actitudes y valores			
Descripción general de simulación de procesos con Aspen – HYSYS Bases y entorno de Propiedades de simulación en Aspen – HYSYS Modelos termodinámicos y Criterios de Selección. Cálculos de Propiedades de fluidos ideales y no ideales. Balances de masa y energía Ciclos de Potencia – Refrigeración – Calefacción	 Capacidad de análisis, síntesis y evaluación. Buena comunicación oral y escrita 	 Capacidad crítica y autocrítica. Sensibilidad hacia temas medioambientales Resolución de problemas. 			

Estrategias de enseñanza:

Clases audio visuales, supervisión de trabajos, videoconferencias al vivo para dudas y consultas, métodos de casos, aprendizaje basado en problemas, conferencias magistrales, mesas redonda virtuales una vez por semana, Debates, lluvia de ideas, entre otras.

Recursos didácticos:

Plataforma institucional CLASSROOM, proyector digital, sistema de audio, computadora personal, software ASPEN HYSYS.

Modulo N°1: NATURALEZA DE LOS FLUIDOS Y ESTUDIO DE LA MECÁNICA DE FLUIDOS Competencia:

Clasifica los diferentes tipos de fluido e identifica el campo de aplicación de la mecánica de fluidos con base en el análisis del desarrollo histórico de dicha disciplina.

Define las propiedades de los fluidos e identifica las variables y parámetros termodinámicos que afectan su comportamiento con base en la observación y planteamiento de ecuaciones.

Objetivo del módulo:

- Clasificar los diferentes tipos de fluido e identificar el campo de aplicación de la mecánica de fluidos.
- Definir las propiedades de los fluidos e identificar las variables y/o parámetros termodinámicos que afectan su comportamiento en el campo de aplicación de mecánica de fluidos y transferencia de calor.

Elementos de Competencia Disciplinar				
Conocimientos Habilio		es	Actitudes y valores	
Conceptos fundamentales	Pensamiento crítico Capacidad de ap		 Independencia. 	
Viscosidad de los Fluidos	cuenta propia. Capacidad de análi	nálisis, síntesis	Responsabilidad	
Medición de presión.	y evaluación.		Orden	
Estrategias de enseñanza:	Re	cursos didá	cticos:	
Aprendizaje basado en resolució mesas redonda online una vez po de ideas, presentación del pro	or semana, Iluvia dig	jital, sistema	titucional classroom, proyector de audio, computadora personal, are libre ASPEN HYSYS.	

Modulo N°2: DISEÑO Y SIMULACIÓN DE SISTEMAS DE TRANSPORTE DE FLUIDOS INCOMPRESIBLES

Competencia:

diapositivas.

Analiza y resuelve problemas aplicados de la estática de fluidos con base en la ecuación básica de la hidrostática.

Identifica, analiza y resuelve problemas aplicados de la dinámica de fluidos con base en los parámetros y ecuaciones gobernantes.

Obietivo del módulo:

- Analizar y resolver problemas aplicados de la estática de fluidos.
- Identificar, analizar y resolver problemas aplicados de la dinámica de fluidos

Ele	mentos de Competencia Discipli	nar
Conocimientos	Habilidades	Actitudes y valores
mecánica de fluidos. Régimen de Flujo. Selección y Aplicación de dispositivos mecánicos de aumento de energía (bombas). Diseño y simulación de sistemas reales con bombas, tuberías y accesorios.	y evaluación. Capacidad en la solución de problemas prácticos.	 Disciplina. Percepción. Responsabilidad Perseverancia Puntualidad Asistencia
Estrategias de enseñanza:	Recursos didád	cticos:

Aprendizaje basado en resolución de problemas, mesas redonda online una vez por semana, lluvia de ideas, presentación del profesor mediante diapositivas.

Plataforma institucional classroom, proyector digital, sistema de audio, computadora personal, internet y software ASPEN HYSYS.

Modulo N°3: FLUJO COMPRESIBLE EN TUBERÍAS

Competencia:

Analiza y resuelve problemas aplicados de los sistemas de flujo compresible con base en los principios físicos fundamentales.

Objetivo del módulo:

- Analizar y resolver problemas aplicados a líneas de transporte de gases.
- Identificar, analizar y resolver problemas aplicados a los diferentes tipos de compresores

Elementos de Competencia Disciplinar						
Conocimientos	Habilidades	Actitudes y valores				
Introducción Principios físicos fundamentales. Procesos en flujo de fluidos compresibles Diseño y simulación de sistemas de flujo compresible reales con ASPEN HYSYS. Selección – operación de sistemas reales de Compresión en una y múltiples etapas	Capacidad de aprender por	 Disciplina. Percepción. Responsabilidad Perseverancia Puntualidad Asistencia 				

Estrategias de enseñanza:

Aprendizaje basado en resolución de problemas, mesas redonda online una vez por semana, lluvia de ideas, presentación del profesor mediante diapositivas.

Recursos didácticos:

Plataforma institucional classroom, proyector digital, sistema de audio, computadora personal, internet y software ASPEN HYSYS.

Modulo N°4: TEMAS AVANZADOS MECÁNICA DE FLUIDOS

Competencia:

- Analiza y resuelve problemas aplicados de los sistemas de flujo monofásico y multifasico con base en los principios físicos fundamentales y herramientas computaciones.
- Desarrolla casos dinámicos de sistemas de transporte reales

Objetivo del módulo:

- Analizar y resolver problemas aplicados a líneas de transporte de monofásico y multifasico
- Identificar, analizar y resolver problemas de sobretensión en máquinas compresoras
- Simular y resolver problemas asociados a los recipientes a presión

Elementos de Competencia Disciplinar					
Conocimientos	Habilidades	Actitudes y valores			
ANÁLISIS HIDRÁULICO de	Capacidad de identificar y	 Disciplina. 			
flujo de tubería en Aspen	•	 Percepción. 			
HYSYS (Aspen Hydraulics).	Capacidad de aprender por	 Responsabilidad 			
DISEÑO HE INSTALACIÓN de		 Perseverancia 			
Válvulas de Control.	Capacidad de análisis, síntesis	 Puntualidad 			
	y evaluación.	 Asistencia 			

DIMENSIONAMIENTO DE TUBERÍAS (Cálculo del tamaño óptimo) Line Sizing ANÁLISIS DINÁMICO de Control do Sobrepresiones para		ácticos y de	
Control de Sobrepresiones para sistemas de compresión centrífugos. DISEÑO, SIMULACIÓN Y OPERACIÓN de Recipientes a Presión Reales			
Estrategias de enseñanza:		Recursos didácticos:	
Aprendizaje basado en resolución de problemas, mesas redonda online una vez por semana, lluvia de ideas, presentación del profesor mediante diapositivas.		digital, sistema	stitucional classroom, proyector de audio, computadora personal, are ASPEN HYSYS.

7. MODALIDAD GENERAL:

 MODALIDAD ASICRONICA: ACCESO 100% ONLINE E INMEDIATO, CLASES EN FULL HD CON ACCESO LAS 24 HORAS DEL DÍA, clases didácticas, audio – visuales, teórico – prácticas.

8. INVERSIÓN Y BENEFICIOS:

El curso tiene un valor total de 220 BOB Para estudiantes y profesionales de Bolivia (Participantes del Exterior 35 USD). La inversión del participante tiene los siguientes BENEFICIOS:

- Finalizado el curso en el tiempo programado y aprobando todos los módulos, la empresa AlTech S.R.L. otorga un certificado avalado a nivel nacional e internacional emitido automáticamente en nuestra plataforma, el cual contiene datos actuales del inscrito, carga horaria, sellos auténticos y un código QR para verificación de toda la información mencionada por parte de la empresa al momento que se presente el certificado.
- Acceso a la plataforma virtual por seis meses.
- Software y tutorial de instalación en la última versión.

9. INSCRIPCIONES Y REGISTROS:

Forma de Pago:

PARTICIPANTES DE BOLIVIA: Depósito en cuenta del BANCO NACIONAL DE BOLIVIA BNB. Cuenta Nro. 3502718869 en Bs. a nombre de Rony Cáceres Villarroel, representante legal de los cursos de simulación.

PARTICIPANTES DEL EXTERIOR: Transferencias WESTER UNION o MoneyGram a los siguientes datos: Nombre: **Rony Cáceres Villarroel**, Ciudad: Cochabamba-Bolivia, Documento de Identidad: 6472960 CBBA, Teléfono: 79990421, Dirección: Calle Enrrique Jiménez – Vinto – Cochabamba – Bolivia

Nota:

 Una vez realizado el pago, deberá ADJUNTAR SU VOUCHER DE PAGO en la página web www.aitech.com.bo para completar su inscripción.

10. DATOS DEL PROFESOR:

NOMBRE Y APELLIDOS: BRUNO GUEVARA

EMAIL: <u>quevara AH@outlook.com</u>

BREVE CV:

Ingeniero Químico con certificación: ASPEN HYSYS EXPERT USER CERTIFICATION de ASPENTECH, con conocimientos extensos en Ingeniería de Control y Automatización. Es especialista en diseño, simulación y optimización de sistemas físicos y químicos, así como en la supervisión e inspección de plantas de procesamiento de hidrocarburos y fluidos en general. Fue instructor capacitador en el área de diseño y simulación exclusivo para docentes e Investigadores de la Facultad de Ciencias y Tecnología de la UMSS. Es instructor capacitado y aprobado de los cursos de (1) Diseño y Simulación de Operaciones Físicas y Químicas, (2) Operaciones Unitarias en ingeniería química, (3) Fenómenos de Transporte A y B, (4) Diseño de Plantas y de sistemas reactivos (5) Simulación Dinámica v Control Avanzado de Procesos (6) PYTHON aplicado a la Ingeniería de Procesos. Ha desempeñado trabajos en muchas empresas del rubro petrolero y como también en la publicación de libros con propiedad intelectual titulados "SIMULACIÓN DE PROCESOS APLICADO A LA INDUSTRIA PETROLERA EMPLEANDO ASPEN - HYSYS V9", con número DA - C 10238 - 2017 y la Obra literaria titulada "INGENIERÍA BÁSICA DE PROCESOS QUÍMICOS", con número DA - C 100002 -2018, actualmente se desempeña como docente de las materias de Operaciones Unitarias I y II de la FCyT-UMSS y también Desarrolla las líneas de cálculos avanzados en: - Diseño, Simulación y Optimización de Procesos basados en lenguajes de programación.

11